Chapter III: Interactions of electrons with matter

Contents of the chapter

- Electronic stopping force
- Nuclear stopping force
- Radiative collisions
- Cherenkov effect
- Electron trajectory

Basic considerations about e⁻ and e⁺

- Large energy transfer possible
- large angular deviations possible \rightarrow curled trajectory
- Incident positrons can transfer all their energy to a target electron in one collision $\leftrightarrow T_{max} = \gamma E = E$
- Incident electron and target electron are indistinguishable \rightarrow After a collision the most energetic is followed (by convention) and $T_{max} = E/2$
- e^{-}/e^{+} are « quickly » relativistic ($E_0 = m_e c^2 = 511 \text{ keV}$)

Electronic stopping power for $e^{-}(1)$

- As for incident ions \rightarrow necessary to distinguish between distant and close collisions \rightarrow or equivalently between collisions with large or small transferred energy $Q(Q_0, as \ll boundary \gg)$
- For distant collisions \rightarrow same procedure as for Bethe equation $\rightarrow \frac{1}{2} \frac{dE_{elec}^{l}}{dE_{elec}} = \frac{2\pi r_{e}^{2}mc^{2}}{N_{A}} \frac{Z}{Z} \left[\frac{2mc^{2}\beta^{2}Q}{dE_{elec}} \frac{2\pi r_{e}^{2}mc^{2}}{R_{e}} \frac{N_{A}}{2} \frac{Z}{R_{e}} \left[\frac{2mc^{2}\beta^{2}Q}{R_{e}} \frac{R_{e}^{2}}{R_{e}} \frac{R_{e$

$$-\frac{1}{\rho}\frac{aE_{elec}}{dx} = \frac{2\pi T_e mc}{\beta^2} \frac{N_A}{M_u} \frac{Z}{A} \left[\ln\left(\frac{2mc}{(1-\beta^2)I}\right) - \beta^2 \right]$$

• For close collisions \rightarrow procedure of Møller (1932) taking into account relativistic effects, spin effects and exchange effect (electrons are indistinguishable) with $\tau = E/mc^2 \rightarrow$

$$-\frac{1}{\rho}\frac{dE_{elec}^{p}}{dx} = \frac{2\pi r_{e}^{2}mc^{2}}{\beta^{2}}\frac{N_{A}}{M_{u}}\frac{Z}{A}\frac{dQ}{Q^{2}}$$

$$\times \left[1 + \frac{Q^{2}}{(E-Q)^{2}} + \frac{\tau^{2}}{(\tau+1)^{2}}\left(\frac{Q}{E}\right)^{2} - \frac{(2\tau-1)}{(\tau+1)^{2}}\frac{Q}{(E-Q)}\right]$$

Electronic stopping power for $e^{-}(2)$

 By combining results for distant and close collisions and by including shell and density corrections →

$$-\frac{1}{\rho}\frac{dE_{elec}}{dx} = \frac{4\pi r_e^2 mc^2}{\beta^2}\frac{N_A}{M_u}\frac{Z}{A}\left[\ln\left(\frac{E}{I}\right) + \ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^-\left(\tau\right) - \frac{\delta}{2} - \frac{C}{Z}\right]$$

with

$$F^{-}(\tau) = \frac{1-\beta^2}{2} \left[1 + \frac{\tau^2}{8} - (2\tau + 1)\ln 2 \right]$$

• We note that the first factor is the same as for ions

Example of electronic stopping for e⁻

e⁻ incident on aluminium

www.nist.gov/pml/data/star/index.cfm

Electronic stopping for e^- in \neq media

- $dE/dx \approx \text{constant for } E > 1 \text{ MeV}$
- Weak difference between all media

Electronic stopping power for e⁺

Same expression as for electrons with F⁻ replaced by F⁺ (taking into account that all kinetic energy can be transferred into only one collision) →

$$-\frac{1}{\rho}\frac{dE_{elec}}{dx} = \frac{4\pi r_e^2 mc^2}{\beta^2}\frac{N_A}{M_u}\frac{Z}{A}\left[\ln\left(\frac{E}{I}\right) + \ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^+\left(\tau\right) - \frac{\delta}{2} - \frac{C}{Z}\right]$$

with

$$F^{+}(\tau) = \ln 2 - \frac{\beta^2}{24} \left[23 + \frac{14}{\tau + 2} + \frac{10}{(\tau + 2)^2 + \frac{4}{(\tau + 2)^3}} \right]$$

Comparison between e⁻ and e⁺

Remark about density effect (δ) for e⁻ and e⁺

- For ion \rightarrow density effect significant for large energies
- For electron (with small mass) → density effect becomes important for smaller energies → must be considered for electrons emitted during nuclear disintegrations
- Complete study made by Sternheimer (1952) → δ depends on the composition and on the density of the medium as well as on the velocity of the particle via the χ parameter →

$$\chi = \log \frac{p}{mc} = \log \beta \gamma_1$$

Density effect for e^- and $e^+(1)$

Density effect for e^- and e^+ (2)

T (MeV)	Effect ^e (%)			
	c	Cu	Au	
0.1	0	0	0	
1.0	3	1.5	0.7	
5	9	7	5	
10	12	10	8	
50	20	18	15	

Polarization Effect for Electrons

^eDecrease in mass collision stopping power for condensed media vs. gases. Density effect for e^- and $e^+(3)$

13

Restricted stopping power (linear energy transfer)

L_{Δ}: Linear energy transfer (LET) (or Restricted stopping power) \rightarrow

$$L_{\Delta} = \frac{dE_{\Delta}}{dx}$$
$$L_{\Delta} = \frac{dE_{elec}}{dx} - \frac{dE_{KE>\Delta}}{dx}$$

with $dE_{\Delta} = dE_{elec} - dE_{KE>\Delta}$ et $dE_{KE>\Delta}$: sum of kinetic energies for secondary e⁻ (e⁻ δ) with kinetic energy > the Δ energy $\rightarrow dE_{\Delta}$ is the locally transferred energy

 L_{∞} : Non-restricted stopping power $\rightarrow L_{\infty} = \frac{dE_{elec}}{dx}$

Nuclear stopping for e^- and e^+

- Collision with nuclei do not give any contribution to stopping
- These collisions explain the curved trajectory of electrons in matter
- In general: large number of small deviation collisions
- Small probability of very large deviation (up to 180°)

Radiative collisions (1)

- A free charged particle (+ or -) accelerating → energy dissipated by electromagnetic radiation
- Radiation called deceleration radiation or Bremsstrahlung
- For v ≪ c → the radiated power P is given the equation of Larmor (see electromagnetism teaching) →

$$P = \frac{2}{3} \frac{e_1^2}{4\pi\epsilon_0 c^3} a^2$$

with ϵ_0 the vacuum permittivity, e_1 the charge of the particle and a_1 its acceleration

Radiative collisions (2)

The radiated power is proportional to the square of the acceleration → if we consider the force F between an incident particle 1 (energy E, charge z₁e and mass m₁) and a target particle 2 (charge Z₂e) →

Characteristics of Bremsstrahlung

- P ∝ m₁⁻² → radiative process negligible for incident ions → must be considered only for incident e⁻ and e⁺
- The acceleration can happen in the field of the nucleus (n) or of an atomic electron (e) → weaker because of charge = e → but as Z₂ electrons are present → the total cross section will be multiplied by Z₂ (global effect) → at the end difference of a factor Z₂
- The mass radiative stopping power is written \rightarrow

$$-\frac{1}{\rho}\frac{dE_{rad}}{dx} = \frac{N_A}{M_u A} \left[\int h\nu \frac{d\sigma_n}{d(h\nu)} d(h\nu) + Z_2 \int h\nu \frac{d\sigma_e}{d(h\nu)} d(h\nu) \right]$$

with $d\sigma_{n,e}/d(h\nu)$, the differential cross sections for the emission of a photon with energy $h\nu$ due to the interactions with a nucleus or with an atomic electron ¹⁸

Characteristics of Bremsstrahlung for incident e⁻(1)

- For an electron-ion interaction → energy emission spectrum for the photon continuous between 0 and E
- For an electron-electron interaction → energy emission spectrum for the photon continuous between 0 and E' with (energy conservation + indistinguishable e⁻ + relativistic corrections) →

$$E' = mc^{2}E[E + 2mc^{2} - \beta(E + mc^{2})]^{-1}$$

 Usually non-dimensional cross sections for radiative energy losses are introduced →

$$\Phi_{rad,n} = (\alpha r_e^2 Z_2^2)^{-1} \int_0^E (h\nu/E_{tot}) \frac{d\sigma_n}{d(h\nu)} dh\nu$$
$$\Phi_{rad,e} = (\alpha r_e^2)^{-1} \int_0^{E'} (h\nu/E_{tot}) \frac{d\sigma_e}{d(h\nu)} dh\nu$$

Characteristics of Bremsstrahlung for incident e⁻ (2)

- We introduce in previous expressions the constant of fine structure $\alpha = 1/137.036$ and $E_{tot} = E + mc^2$, the total energy of the electron
- With these notations → the mass radiative stopping power becomes →

$$-\frac{1}{\rho}\frac{dE_{rad}}{dx} = \frac{N_A}{M_u A}\alpha r_e^2 E_{tot} Z_2^2 \Phi_{rad,n} [1 + (1/Z)\Phi_{rad,e}/\Phi_{rad,n}]$$

• Usually $\rightarrow \Phi_{rad,e} / \Phi_{rad,n}$ is supposed to be equal to 1, but it is only true at high energies \rightarrow for E $\searrow \rightarrow$ it is possible to show that it tends towards 0

 $\Phi_{\rm rad,e}/\Phi_{\rm rad,n}$ ratio

 $\Phi_{rad,e}/\Phi_{rad,n}$ does not depend much on Z

Determination of $\Phi_{\mathrm{rad,n}}$

- Complex calculation → ≠ approximations for high E (E > 50 MeV) and small energies (E < 2 MeV) → between these 2 limits → interpolation
- Moreover it is necessary to consider the screening of the nucleus by atomic electrons
- Finally $\Phi_{rad,n}$ is a function that slowly varies as a function of E and Z_2
- For $E < 2 \text{ MeV} \rightarrow \Phi_{rad,n} \approx 16/3$ (that can be obtained from a non- relativistic calculation) \rightarrow constant cross section
- For high $E \rightarrow \Phi_{rad,n} \nearrow$ for $E \nearrow$ and tends towards \rightarrow

$$\Phi_{rad,n} \to 4\left(\frac{1}{18} + \ln 183Z_2^{-1/3}\right)$$

Examples of $\varPhi_{\mathit{rad,n}}$ for various media

23

Asymptotic behaviour of $\Phi_{rad,n}$ as a function of Z

24

Differential cross sections

- It is possible to show that hνdσ_n/d(hν) is independent on hν for small energies of incident e⁻ → radiated energy density is constant
- For larger energies of incident $e^- \rightarrow h\nu d\sigma_n/d(h\nu) \supseteq$ when $h\nu \nearrow$
- *dσ_n/d(Ω)* has a maximum ⊥ to the direction of incident beam for small energies of incident e⁻
- For larger energies → the maximum gradually moves to the direction of incident beam

Radiated energy density for thin targets

Bremsstrahlung: thin target \leftrightarrow thick targets (1)

- In a thin target Bremsstrahlung is the photon emission in only one collision between electron and atom → process described by the differential cross section
- Bremsstrahlung in a thick target results from multiple interactions process of the electron → e⁻ loses an important part of its energy (or all its energy) in the target
- Radiated energy density in a thick target is thus the sum of radiated energy densities in a thin target for different energies

Bremsstrahlung: thin target \leftrightarrow thick targets (2)

Characteristics of Bremsstrahlung for incident e⁺

- For incident $e^+ \rightarrow (\Phi_{rad,n})^+ \approx (\Phi_{rad,n})^-$ for high energies but for small energies $\rightarrow (\Phi_{rad,n})^+ < (\Phi_{rad,n})^-$ (absence of electric dipolar moment)
- Moreover for high $E \rightarrow (\Phi_{rad,e})^+ \approx (\Phi_{rad,e})^-$ but for small $E \rightarrow (\Phi_{rad,e})^+ > (\Phi_{rad,e})^-$
- Finally → radiative stopping power smaller for e⁺ than for e⁻ at small incident energies and about equal for high energies

 $\varPhi_{\mathit{rad},\mathit{n}}$ for incident $\mathbf{e}^{\scriptscriptstyle -}$ and $\mathbf{e}^{\scriptscriptstyle +}$

$(T/Z^2)/MeV$		$[\phi_{\mathrm{rad,n}}]^+/[\phi_{\mathrm{rad,n}}]^-$	
	1×10^{-7}	0.014	
	2×10^{-7}	0.030	
	5×10^{-7}	0.059	
	1×10^{-6}	0.087	
	1.18×10^{-6}	0.094*	
	$2 imes 10^{-6}$	0.119	
	$5 imes 10^{-6}$	0.166	
•	$5.91 imes 10^{-6}$	0.175*	
	$1 imes 10^{-5}$	0.206	
	2×10^{-5}	0.253	
	5×10^{-5}	0.335	
	5.91×10^{-5}	0.359*	
	1×10^{-4}	0.415	
	$1.56 imes 10^{-4}$	0.465*	
	2×10^{-4}	0.507	
	$5 imes 10^{-4}$	0.640	
· · ·	$7.81 imes10^{-4}$	0.708*	
	$1 imes 10^{-3}$	0.740	
	2×10^{-3}	0.816	
	5×10^{-3}	0.887	
	$7.81 imes10^{-3}$	0.916*	
	$1 imes 10^{-2}$	0.928	
	2×10^{-2}	0.962	
	$5 imes 10^{-2}$	0.991	
	1×10^{-1}	1.000	

.

4.6

30

Total stopping power for electrons

- Total stopping power is the sum of electronic and radiative stopping powers (nuclear stopping power is negligible)
- As $dE_{elec}/dx \rightarrow \text{constant}$ when $E \nearrow$ and as $dE_{rad}/dx \propto E \rightarrow$ For E $\nearrow \rightarrow$ radiative losses become dominant
- As $dE_{elec}/dx \propto Z/A$ et $dE_{rad}/dx \propto Z^2/A \rightarrow$ radiative stopping power increases more quickly with Z than the electronic stopping power
- The critical kinetic energy E_c for which both stoppings are equal >> when $Z \nearrow$
- $1/E_c$ linearly varies with $Z \rightarrow$ For E_c in MeV:

$$E_c = \frac{817}{Z + 1.97}$$

Stopping power for electron: example 1

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

Incident electrons on Al (Z = 13) \rightarrow with equation: E_c = 54.6 MeV

Stopping power for electron: example 2

Evolution of E_c as a function of Z

Radiation yield (1)

- The radiation yield $Y(E_0)$ of an electron with initial kinetic energy E_0 is the fraction of energy emitted as photons for a complete stopping of the incident electron in the medium
- The fraction *y*(*E*) of loss energy per unit of travelled distance that is converted into photons is given by

$$y(E) = \frac{dE_{rad}/dx}{dE_{tot}/dx} = \frac{dE_{rad}}{dE_{tot}}$$

Thus Y(E₀) for an electron with initial energy E₀ is the mean value of y(E) for E varying from E₀ to 0

$$Y(E_0) = \frac{\int_{parcours} dE_{rad}}{E_0} = \frac{1}{E_0} \int_0^{E_0} y(E) dE$$

Radiation yield (2)

• The radiation yield \nearrow for E \nearrow and Z \nearrow

 For small energies → radiation yield is weak → almost all e⁻ energy is dissipated as heat → target must be cooled

Radiation yield: Example

Electron energy (MeV)

Cherenkov effect

- When a charged particle travels in a medium faster than the light velocity in the medium (c/n with n refractive index of the medium) → radiation emission
- Phenomenon analog to the shock wave produced in air at supersonic velocities
- The particle polarizes the medium → for particle velocities < c/n → the dipoles are distributed in a symmetric way along the particle trajectory (in particular with respect to the plane ⊥ to the trajectory → net dipolar momentum equal to 0 → during the return to non-polarized state → aleatory electromagnetic perturbations (propagating with velocity c/n) that cancel themselves
- For particle velocities > c/n → the velocity for dipoles creation < particle velocity → asymmetry with respect to the plane ⊥ to the trajectory → net dipolar momentum different from 0 → perturbations constructively interfere → apparition of a wave

Medium polarization by charged particle

Huygens construction for Cherenkov effect

- From the principle of Huygens:
 Image: Constraint of of H
- Direction of emission: $\cos \Theta_c = \frac{(c/n)t}{vt} = \frac{c}{nv} = \frac{1}{n\beta}$

Remarks on Cherenkov effect

- Previous equation well implies a minimum velocity v_{min} = c/n (and consequently → n > 1)
- With $T = E m_0 c^2 = (\gamma 1) m_0 c^2$:

$$T_{min} = m_0 c^2 \left(\frac{n}{\sqrt{n^2 - 1}} - 1\right)$$

- For electron in water: $T_{min} = 264 \text{ keV}$
- For proton in water: $T_{min} = 486 \text{ MeV}$
- Cherenkov effect only for incidents electrons (for energies considered here)
- Refractive index varies with wave length → as we need n(λ) > 1
 → only wave lengths for which this condition is fulfilled appears in the emission spectrum → no X-ray

Refractive index of water

Maximum in the blue

• The medium must be transparent in the visible to allows to detect Cherenkov effect

Contribution to energy loss

• Number of photons emitted per unit length and per frequency unit \rightarrow $d^2 N = 2\pi \alpha z^2$

$$\frac{d^2 N}{d\nu dx} = \frac{2\pi\alpha z^2}{c}\sin^2\Theta_c$$

• For an electron (z = -1) and an optical windows between 350 nm and 500 nm (with n independent on λ in this windows) \rightarrow

$$\frac{dN}{dx} = 390\sin^2\Theta_c(\mathrm{cm}^{-1})$$

 Very small number of photons → no contribution to the energy loss

Cherenkov effect: example

Fuel assemblies cool in a water pond at the nuclear complex at La Hague

Electron trajectories (1)

 The notion of range for electrons is not so clear than for ions → the electron trajectory cannot be considered as a straight line
 → large angular deviations are possible (during electronic and nuclear collisions)

Electron trajectories (2)

- Moreover the electron can lose an important fraction of its energy in only one collision (→ 50%) → depth penetration and length of the trajectory are random with large distributions → important straggling
- In databases \rightarrow tabulation of the range CSDA, $R_{CSDA} \rightarrow$ large difference can occur between R_{CSDA} and real range
- Detour factor can be very different from 1 (≈ 0.9 for media with small Z but can reach ≈ 0.5 for large Z)

Depth penetration and trajectory length: Example

Distributions measured for a 800 keV electron in water

Detour factor : Examples

T / MeV	Ζ	$d_{\rm max} \ / \rm mg \cdot \rm cm^{-2}$	$\mathbb{R}_{\rm csda} \ /mg \cdot cm^{-2}$	$d_{\max}/\mathbb{R}_{\mathrm{csda}}$
0.05	13(Al)	5.05	5.71	0.88
0.10	13(Al)	15.44	18.64	0.83
0.15	13(Al)	31.0	36.4	0.85
0.05	29(Cu)	5.42	6.90	0.79
0.10	29(Cu)	17.1	22.1	0.77
0.15	29(Cu)	34.0	42.8	0.79
0.05	47(Ag)	5.04	7.99	0.63
0.10	47(Ag)	15.6	25.2	0.62
0.15	47(Ag)	30.2	48.4	0.62
0.05	79(Au)	4.73	9.88	0.48
0.10	79(Au)	14.3	30.3	0.47
0.15	79(Au)	27.6	57.5	0.48

CSDA range: Examples (1)

- For 1 MeV electron in lead $\rightarrow R_{CSDA} = 0.7$ mm
- For 1 MeV electron in silicon $\rightarrow R_{CSDA} = 2$ mm
- For 1 MeV electron in air $\rightarrow R_{CSDA} = 4076$ mm

CSDA range: Examples (2)

Incident electron on aluminium (ρ =2.70 g/cm³)

http://www.nist.gov/pml/data/star/index.cfm

CSDA range: Examples (3)

As for ions \rightarrow we show $R_{CSDA} \times \rho \rightarrow \rho R_{CSDA}$ (quasi-) independent from medium, especially for small energies

Empirical equation for the range

For media with small Z \rightarrow empirical equation (with ρR_{CSDA} in gcm⁻² and E in MeV) \rightarrow

$$\rho R_{CSDA} = \begin{cases} 0.412 E^{1.27 - 0.0954 \ln E} & \text{for } 0.01 < E < 2.5\\ 0.530 E - 0.106 & \text{for } E > 2.5 \end{cases}$$

Transmission of electrons

Shape completely \neq from the shape obtained for ions (rectangle) \rightarrow

Transmission of electrons β (1)

- During disintegration $\beta \rightarrow$ the β and a neutrino share the available energy between them \rightarrow spectrum in energy for the β continuous between 0 and $E_{max} \rightarrow$ « bell-shaped » curve
- When the β attenuation is observed \rightarrow behaviour \sim to a decreasing exponential \rightarrow the ratio of the transmitted intensity *I* on the initial intensity I_0 is approximated by \rightarrow

$$\frac{I}{I_0} = \exp\left(-n\rho d\right)$$

• With ρ , the density of the medium, d, its thickness and n, the absorption coefficient i.e. a constant depending on E_{max} (and weakly on the medium) \rightarrow empirical expression for n (m²kg⁻¹) \rightarrow

$$n = 1.7 E_{max}^{-1.14}$$

Transmission of electrons β (2)

Approximate expression \rightarrow false for a material thickness \sim to the range of electrons with energy E_{max}

Positron annihilation

Annihilation of the e⁺ after the loss of all its kinetic energy \rightarrow different processes are possible \rightarrow the most probable is the annihilation with an e⁻ at rest \rightarrow emission of 2 γ of 511 keV each (conservation of energy and momentum)

Example of muon ("heavy electron")

