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Basic considerations about e and et

Large energy transfer possible
large angular deviations possible - curled trajectory

Incident positrons can transfer all their energy to a target electron in
one collision > T =7E=E

Incident electron and target electron are indistinguishable - After a
collision the most energetic is followed (by convention) and T, = E/2

e’/e* are « quickly » relativistic (E,= m_ c2=511 keV)



Electronic stopping power for e (1)

* As forincident ions - necessary to distinguish between distant
and close collisions - or equivalently between collisions with
large or small transferred energy Q (Q,, as « boundary »)

* For distant collisions - same procedure as for Bethe equation -
1 dEelec B 2rome® Ny Z In 2mc? B2Q s

Tp de B MJA| \(1- )

* For close collisions - procedure of Mgller (1932) taking into

account relativistic effects, spin effects and exchange effect
(electrons are indistinguishable) with 7= E/mc? >

1dE§leC _ 2mrimce® Na Z dQ
p dx - 82 MuZQ2
& P QV @r-1) Q
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Electronic stopping power for e (2)

* By combining results for distant and close collisions and by
including shell and density corrections -

p dr B2 M, A

2 9
_1 dEciec  4mrimce® Na Z [ln (?) +ln(

1+%)1/2+F(7)——]

with

F~ (1) = 1_25 {1%—%—(27—#1)11’12}

e We note that the first factor is the same as for ions



Example of electronic stopping for e

e"incident on aluminium

www.nist.gov/pml/data/star/index.cfm
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Electronic stopping for e in # media
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* dE/dx = constant for E> 1 MeV
e Weak difference between all media



Electronic stopping power for e*

* Same expression as for electrons with F replaced by F* (taking
into account that all kinetic energy can be transferred into only
one collision) -

2 2 1/2
e i KA (B) v (14 3) 4 mt -5

p dx ISR M, A I 7
with
B 14 10
Ff(r)=In2—- = |23+ +
24 T+2  (T+2)? +




Comparison between e  and e*

e and etincident on aluminium
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Remark about density effect (0) for e and e*

For ion = density effect significant for large energies

For electron (with small mass) - density effect becomes
important for smaller energies - must be considered for
electrons emitted during nuclear disintegrations

Complete study made by Sternheimer (1952) - d depends on
the composition and on the density of the medium as well as
on the velocity of the particle via the x parameter >

x = log = = log 871
mc

We notice that 0 2/ when y A (pour x > 1) and becomes

« consequent » for E>511 keV (x =0.24) and 0 Y when Z A
(media with small Z are more efficiently polarized) -
important for biologic media
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Density effect for e and e* (2)

Polarization Effect for Electrons

Effect” (%)

T (MeV) C Cu Au
0.1 0 0 0
1.0 3 1.5 0.7
5 9 7 5

10 12 10 8
20 20 18 15

“ Decrease in mass collision stopping power for condensed media
vs. gases.
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Density effect for e and e* (3)
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Restricted stopping power (linear energy transfer)

L ,: Linear energy transfer (LET) (or Restricted stopping power) -

dEA
La=—2~2
A dx
A — dEelec dEKE>A
A = _
dx dx

with dE , = dE,, .- dE;. 5 et dE, .. ,: sSum of kinetic energies for
secondary e (e” 0) with kinetic energy > the A energy - dE ,
is the locally transferred energy

dEelec

L..: Non-restricted stopping power - L, = ¥
X




Nuclear stopping for e and e*

Collision with nuclei do not give any contribution to stopping

These collisions explain the curved trajectory of electrons in
matter

In general: large number of small deviation collisions
Small probability of very large deviation (up to 180°)

Electron backscattering possible - deposited energy in
matter:

Total absorption peak

Backscattered e

Deposited energy distribution

Deposited energy



Radiative collisions (1)

A free charged particle (+ or -) accelerating - energy dissipated
by electromagnetic radiation

Radiation called deceleration radiation or Bremsstrahlung

For v < ¢ - the radiated power P is given the equation of Larmor
(see electromagnetism teaching) -

2 6% 2
p==
3 4mepc3 ¢

with €, the vacuum permittivity, e, the charge of the particle and
a, its acceleration



Radiative collisions (2)

The radiated power is proportional to the square of the
acceleration = if we consider the force F between an incident

particle 1 (energy E, charge z,e and mass m,) and a target particle
2 (charge Z,e) >

2
™~
E -

2 4 72
z1/492€ 2 2 2143
F = 2:m1a:>Po<z1ao< B

Amegr mir ©



http://upload.wikimedia.org/wikipedia/commons/1/1e/Bremsstrahlung.svg

Characteristics of Bremsstrahlung

* P o m,;? - radiative process negligible for incident ions - must
be considered only for incident e and e*

* The acceleration can happen in the field of the nucleus (n) or of
an atomic electron (e) - weaker because of charge = e - but as
Z, electrons are present - the total cross section will be
multiplied by Z, (global effect) & at the end difference of a factor
ZZ

* The mass radiative stopping power is written—>

_Z — Z
S da VA [/ hud(hy)d(hr/) + 2/hyd(hv) d(hl/)]

with do, . /d(hv), the differential cross sections for the emission
of a photon with energy hv due to the interactions with a nucleus
or with an atomic electron



Characteristics of Bremsstrahlung for incident e (1)

For an electron-ion interaction - energy emission spectrum for
the photon continuous between 0 and E

For an electron-electron interaction - energy emission
spectrum for the photon continuous between 0 and E” with
(energy conservation + indistinguishable e + relativistic
corrections) >

E' = mc’E[E + 2mc” — B(E +mc?)] ™!

Usually non-dimensional cross sections for radiative energy
losses are introduced -
B
(I)'rad,n — (057"3222)_1/ (hV/EtOt)
0

do,

(b)) dhv

E,
do
Drode = (arg)_l/ (hv/Eyor) ———dhv
0 Y d(hw)



Characteristics of Bremsstrahlung for incident e (2)

 We introduce in previous expressions the constant of fine
structure a =1/137.036 and E, , = E + mc?, the total energy of

the electron

* With these notations - the mass radiative stopping power
becomes -

1 dEm,d NA 2 2
—_—— p— E O Z @ra mn ]- ]- Z (I)fra, e (I)ra, T
; o MUAOJI"@ tot £i9 d, [ ‘|‘( / ) d, / d, ]

* Usually > &,,4/P,.q, is supposed to be equal to 1, but it is
only true at high energies - for E N = it is possible to show
that it tends towards O
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Determination of @

rad,n

Complex calculation - # approximations for high E (E > 50
MeV) and small energies (E < 2 MeV) = between these 2 limits
— interpolation

Moreover it is necessary to consider the screening of the
nucleus by atomic electrons

Finally @
and Z,

For E<2 MeV > &, = 16/3 (that can be obtained from a
non- relativistic calculation) - constant cross section

For high E > @ A/ for E 2 and tends towards -

qn 1S @ function that slowly varies as a function of £

rad,n

Broar — 4 (1—18 +1n 18322_1/3)



Examples of ¢ for various media

rad,n
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Asymptotic behaviour of @ as a function of Z

rad,n

rad,n
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Differential cross sections

It is possible to show that hvdo,/d(hv) is independent on hv for
small energies of incident e” = radiated energy density is
constant

For larger energies of incident e - hvdo,/d(hv) N when hv 2

do, /d(Q2) has a maximum _L to the direction of incident beam
for small energies of incident e

For larger energies - the maximum gradually moves to the
direction of incident beam



kdo/dfadk (mbisr)

Radiated energy density for thin targets

fluorescence RX

Radiated energy density as
a function of the energy of
the photons emitted for 60
keV e incident on various
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Bremsstrahlung: thin target <= thick targets (1)

* In a thin target Bremsstrahlung is the photon emission in only
one collision between electron and atom - process described
by the differential cross section

* Bremsstrahlung in a thick target results from multiple
interactions process of the electron - e loses an important
part of its energy (or all its energy) in the target

* Radiated energy density in a thick target is thus the sum of
radiated energy densities in a thin target for different energies



Bremsstrahlung: thin target <= thick targets (2)
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Characteristics of Bremsstrahlung for incident e*

Forincidente* 2 (2, )" = (P, , ) for high energies but for
small energies > (P, , )" < (P4, ) (absence of electric
dipolar moment)

Moreover for high £ 5 (2,4, )" = (P,,q. ) but for small £ 5
( rad,e )+ > (erade )

Finally = radiative stopping power smaller for e* than for e at
small incident energies and about equal for high energies



P for incident e and e*

rad,n
(TXZQ)/MEV [¢rad,n]+/[¢‘rad.n]—
1 X 1077 - 0.014-
2 X 1077 0.030
5X 107 | 0.059
1X 1078 - 0.087
1.18 X 106 0.094*
9 X 106 0.119
5 X 106 | 0.166
591 X 10~% : 0.175*
1X10°° 0.206
9 X 1070 0.253
5% 1075 ' 0.335
5.91 X 10~3 0.359* -
1% 104 0.415
1.56 X 104 - 0.465*
2 %X 104 0.507
EX107% 0.840
7.81 X 10~% - 0.708*
11073 0.740
2x 103 0.816
5% 1073 0.887
7.81 X 103 0.916*
1102 0.928
2 X 102 0.962
53X 1072 - 0.991

1 %1071 1.600




Total stopping power for electrons

Total stopping power is the sum of electronic and radiative
stopping powers (nuclear stopping power is negligible)

As dE,./dx —> constant when E 2 and as dE,, /dx o E - For E
/1 = radiative losses become dominant

As dE,,,/dx x Z/A et dE, /dx o Z?/A - radiative stopping
power increases more quickly with Z than the electronic
stopping power

The critical kinetic energy E. for which both stoppings are equal
N whenZ A/

1/E_linearly varies with Z - For E_in MeV:

817
E. =
7 +1.97




Stopping power for electron: example 1
http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

— Electronic stopping power
—— Radiative stopping power
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Stopping power for electron: example 2

10° ¢
- | — Electronic stopping power
—— Radiative stopping power
— Total stopping power

10'

10° E
g _~10.0 MeV

Mass stopping power (MeV cm?/g)

Pb, p=11.35 g/cm’

-2 1 1 Illllll 1 1 IlIIIII 1 1 IlIIIII 1 1 IIIIIII 1 1 L 1111
10
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Kinetic energy (MeV)
Incident electrons on Pb (Z = 82) - with equation: E_. = 9.7 MeV
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Radiation yield (1)

* The radiation yield Y(E,) of an electron with initial kinetic
energy E, is the fraction of energy emitted as photons for a
complete stopping of the incident electron in the medium

* The fraction y(E) of loss energy per unit of travelled distance
that is converted into photons is given by

L dEfr’ad/dQU L dE?“ad

FE) = —
y( ) dEtot/dCU dEot

* Thus Y(E,) for an electron with initial energy E, is the mean
value of y(E) for E varying from E,to O

f dErad 1 Lo
Y(E()) __ Jparcours

— E)dE
E Bo | y(E)



Radiation yield (2)

* The radiation yield /A forE A and Z A

* For small energies—> radiation yield is weak—> almost all e
energy is dissipated as heat - target must be cooled



Radiation yield

Radiation yield: Example
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Cherenkov effect

When a charged particle travels in a medium faster than the light velocity in
the medium (c/n with n refractive index of the medium) = radiation
emission

Phenomenon analog to the shock wave produced in air at supersonic
velocities

The particle polarizes the medium = for particle velocities < ¢/n = the
dipoles are distributed in a symmetric way along the particle trajectory (in
particular with respect to the plane L to the trajectory - net dipolar
momentum equal to 0 = during the return to non-polarized state -
aleatory electromagnetic perturbations (propagating with velocity ¢/n) that
cancel themselves

For particle velocities > ¢/n = the velocity for dipoles creation < particle
velocity—> asymmetry with respect to the plane L to the trajectory - net
dipolar momentum different from 0 - perturbations constructively
interfere - apparition of a wave



Medium polarization by charged particle
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Huygens construction for Cherenkov effect

From the principle of Huygens:

Direction of emission: cos®,. =

40



Remarks on Cherenkov effect

Previous equation well implies a minimum velocity v, .. = ¢/n
(and consequently - n > 1)

With T = E-mc? = (7A1)m0c2:

n
Thin = MoC? —1
’ (\/n2 -1 )
For electron in water: T, . = 264 keV

For proton in water: T, = 486 MeV

Cherenkov effect only for incidents electrons (for energies
considered here)

Refractive index varies with wave length - as we need n(\) > 1
— only wave lengths for which this condition is fulfilled
appears in the emission spectrum—- no X-ray



Refractive index of water

Maximum in the blue

\ Cerenkov Radiation
I
B mzlﬁ % //
I

n(E)

Visibie UW. X=rays

* The medium must be transparent in the visible to allows to
detect Cherenkov effect
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Contribution to energy loss

Number of photons emitted per unit length and per frequency
unit -
d> N B 2T az?

. 9
dvdr C sin” O

For an electron (z =-1) and an optical windows between 350
nm and 500 nm (with n independent on A in this windows) -

N
sz—x = 390sin® O, (cm ™)

Very small number of photons - no contribution to the energy
loss



Cherenkov effect: example

Fuel assemblies cool in a water pond at the
nuclear complex at La Hague
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Electron trajectories (1)

 The notion of range for electrons is not so clear than for ions -
the electron trajectory cannot be considered as a straight line

- large angular deviations are possible (during electronic and
nuclear collisions)

}
Rl 4

Depth

Projected lateral displacement




Electron trajectories (2)

Moreover the electron can lose an important fraction of its
energy in only one collision (- 50%) - depth penetration and
length of the trajectory are random with large distributions -
important straggling

In databases - tabulation of the range CSDA, R,y = large
difference can occur between R, and real range

Detour factor can be very different from 1 (= 0.9 for media with
small Z but can reach = 0.5 for large Z)



Depth penetration and trajectory length: Example
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Detour factor : Examples

T /MeV £ ey /Mg -cm | Booge /mg-cm™ | dpas/Pecda
0.05 13(Al) 5.05 5.71 0.88
(.10 13(Al) 15.44 18.64 0.83
(.15 13(Al) 31.0 36.4 0.85
(.05 20(Cu) 5.42 6.90) 0.79
(.10 29(Cu} 17.1 22.1 0.77
(.15 20(Cu) 34.0 42.8 0.79
(.05 47(Ag) 5.04 7.99 0.63
(.10 4T(Ag) 15.6 25.2 0.62
(.15 47(Ag) 30.2 48.4 0.62
0.05 TO(Au) 4.73 0.88 0.48
(.10 T9(Au) 14.3 30.3 0.47
(.15 T9(Au) 27.6 57.5 0.48
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CSDA range: Examples (1)

* For 1 MeV electroninlead - Ry, =0.7mm
* For 1 MeV electron insilicon - Rsp,=2mm

* For 1 MeV electronin air - Ry, = 4076 mm



CSDA range: Examples (2)

Incident electron on aluminium (p =2.70 g/cm3)

100
| —— CSDA range|
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0.01 0.1 1 10 100 1000
Kinetic energy (MeV)

http://www.nist.gov/pml/data/star/index.cfm
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CSDA range: Examples (3)
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As for ions - we show R.py X p = pRcspa (Quasi-) independent
from medium, especially for small energies



Empirical equation for the range

For media with small Z - empirical equation (with pR.p, in gcm™
and E in MeV) >

0.412F127-0.0954In g5 001 < B < 2.5

R _
prresba {0.530E _0.106 for B> 2.5



Transmission of electrons

Shape completely # from the shape obtained for ions (rectangle) -

100 %

S0

Particles transmitted

10
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Transmission of electrons 5 (1)

During disintegration 3 - the 3 and a neutrino share the
available energy between them - spectrum in energy for the 3
continuous between O and £, - « bell-shaped » curve

max

When the ( attenuation is observed - behaviour ~ to a
decreasing exponential - the ratio of the transmitted intensity /
on the initial intensity /, is approximated by -

I

— = exp (—npd)
lo

With p, the density of the medium, d, its thickness and n, the

absorption coefficient i.e. a constant dependingon E, , (and

weakly on the medium) - empirical expression for n (m?kg?) >

n=1"7E-1H4

maix



Transmission of electrons 3 (2)
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Positron annihilation

Annihilation of the e* after the loss of all its kinetic energy -

different processes are possible - the most probable is the
annihilation with an e at rest - emission of 2 v of 511 keV

each (conservation of energy and momentum)

‘\
Pair
\annihilation '
alectron |
& EN
positron \ . .
Before After Application: PET Scan

Energy = 2mgc 2 %‘-

\
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Example of muon (“heavy electron”)
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Muon momentum
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