Chapter III: Interactions of electrons with matter

Contents of the chapter

- Electronic stopping force
- Nuclear stopping force
- Radiative collisions
- Cherenkov effect
- Electron trajectory

Basic considerations about e⁻ and e⁺

- Large energy transfer possible
- large angular deviations possible \rightarrow curled trajectory
- Incident positrons can transfer all their energy to a target electron in one collision \leftrightarrow T_{max} = $\gamma E = E$
- Incident electron and target electron are indistinguishable \rightarrow After a collision the most energetic is followed (by convention) and $T_{max} = E/2$
- e^{-}/e^{+} are « quickly » relativistic ($E_0 = m_e c^2 = 511$ keV)

Electronic stopping power for e⁻ (1)

- As for incident ions \rightarrow necessary to distinguish between distant and close collisions \rightarrow or equivalently between collisions with large or small transferred energy *Q* (*Q⁰* , as « boundary »)
- For distant collisions \rightarrow same procedure as for Bethe equation \rightarrow $1 dE_{\text{else}}^l = 2\pi r_e^2 mc^2 N_A Z \left[-\left(2mc^2 \beta^2 Q \right)^{-1} \right]$

$$
-\frac{c_{\text{rec}}}{\rho} = \frac{c_{\text{rec}}}{\beta^2} = \frac{1}{M_u} \frac{1}{A} \left[\ln \left(\frac{1}{(1 - \beta^2)I} \right) - \beta^2 \right]
$$

For close collisions \rightarrow procedure of Møller (1932) taking into account relativistic effects, spin effects and exchange effect (electrons are indistinguishable) with $\tau = E/mc^2 \rightarrow$

$$
-\frac{1}{\rho} \frac{dE_{elec}^{p}}{dx} = \frac{2\pi r_{e}^{2}mc^{2}}{\beta^{2}} \frac{N_{A}}{M_{u}} \frac{Z}{A} \frac{dQ}{Q^{2}} \times \left[1 + \frac{Q^{2}}{(E-Q)^{2}} + \frac{\tau^{2}}{(\tau+1)^{2}} \left(\frac{Q}{E}\right)^{2} - \frac{(2\tau-1)}{(\tau+1)^{2}} \frac{Q}{(E-Q)}\right]
$$

Electronic stopping power for e⁻(2)

• By combining results for distant and close collisions and by including shell and density corrections \rightarrow

$$
-\frac{1}{\rho}\frac{dE_{elec}}{dx} = \frac{4\pi r_e^2 mc^2}{\beta^2} \frac{N_A}{M_u} \frac{Z}{A} \left[\ln\left(\frac{E}{I}\right) + \ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^-(\tau) - \frac{\delta}{2} - \frac{C}{Z} \right]
$$

with

$$
F^{-}(\tau) = \frac{1 - \beta^2}{2} \left[1 + \frac{\tau^2}{8} - (2\tau + 1) \ln 2 \right]
$$

• We note that the first factor is the same as for ions

Example of electronic stopping for e-

e -

www.nist.gov/pml/data/star/index.cfm

Electronic stopping for e^- in \neq media

- *dE/dx* ≈ constant for *E >* 1 MeV
- Weak difference between all media

Electronic stopping power for e^+

• Same expression as for electrons with F replaced by F^+ (taking into account that all kinetic energy can be transferred into only one collision) \rightarrow

$$
-\frac{1}{\rho}\frac{dE_{elec}}{dx} = \frac{4\pi r_e^2 mc^2}{\beta^2} \frac{N_A}{M_u} \frac{Z}{A} \left[\ln\left(\frac{E}{I}\right) + \ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^+(\tau) - \frac{\delta}{2} - \frac{C}{Z} \right]
$$

with

$$
F^{+}(\tau) = \ln 2 - \frac{\beta^2}{24} \left[23 + \frac{14}{\tau + 2} + \frac{10}{(\tau + 2)^2 + \frac{4}{(\tau + 2)^3}} \right]
$$

Comparison between e⁻ and e⁺

Remark about density effect (δ) for e- and e⁺

- For ion \rightarrow density effect significant for large energies
- For electron (with small mass) \rightarrow density effect becomes important for smaller energies \rightarrow must be considered for electrons emitted during nuclear disintegrations
- Complete study made by Sternheimer (1952) $\rightarrow \delta$ depends on the composition and on the density of the medium as well as on the velocity of the particle via the χ parameter \rightarrow

$$
\chi = \log \frac{p}{mc} = \log \beta \gamma_1
$$

• We notice that $\delta \nearrow$ when $\chi \nearrow$ (pour $\chi > 1$) and becomes « consequent » for E > 511 keV (χ = 0.24) and δ \searrow when Z \angle (media with small Z are more efficiently polarized) \rightarrow important for biologic media

Density effect for e⁻ and e⁺ (1)

Density effect for e⁻ and e⁺ (2)

Polarization Effect for Electrons

"Decrease in mass collision stopping power for condensed media vs. gases.

Density effect for e^- and $e^+(3)$

Restricted stopping power (linear energy transfer)

L¢: **Linear energy transfer** (LET) (or Restricted stopping power) →

$$
L_{\Delta} = \frac{dE_{\Delta}}{dx}
$$

$$
L_{\Delta} = \frac{dE_{elec}}{dx} - \frac{dE_{KE>\Delta}}{dx}
$$

with $dE_A = dE_{elec} - dE_{KE>A}$ et $dE_{KF>A}$: sum of kinetic energies for secondary e⁻ (e⁻ δ) with kinetic energy > the \varDelta energy \Rightarrow $d{\textsf{E}}_{\varDelta}$ is the locally transferred energy

L_∞: **Non-restricted stopping power** \rightarrow $L_{\infty} = \frac{dE_{elec}}{dx}$

Nuclear stopping for e^- and e^+

- Collision with nuclei do not give any contribution to stopping
- These collisions explain the curved trajectory of electrons in matter
- In general: large number of small deviation collisions
- Small probability of very large deviation (up to 180°)
- Electron backscattering possible \rightarrow deposited energy in matter:

Radiative collisions (1)

- A free charged particle (+ or -) accelerating \rightarrow energy dissipated by electromagnetic radiation
- Radiation called deceleration radiation or Bremsstrahlung
- For $v \ll c \rightarrow$ the radiated power P is given the equation of Larmor (see electromagnetism teaching) \rightarrow

$$
P = \frac{2}{3} \frac{e_1^2}{4\pi\epsilon_0 c^3} a^2
$$

with ϵ_0 the vacuum permittivity, e_1 the charge of the particle and *a,* its acceleration

Radiative collisions (2)

• The radiated power is proportional to the square of the acceleration \rightarrow if we consider the force F between an incident particle 1 (energy E, charge z_1 e and mass m₁) and a target particle 2 (charge Z_2e) \rightarrow

Characteristics of Bremsstrahlung

- $P \propto m_1^{-2}$ \rightarrow radiative process negligible for incident ions \rightarrow must be considered only for incident e⁻ and e⁺
- The acceleration can happen in the field of the nucleus (n) or of an atomic electron (e) \rightarrow weaker because of charge $= e \rightarrow$ but as Z_2 electrons are present \rightarrow the total cross section will be multiplied by Z₂ (global effect) \rightarrow at the end difference of a factor Z_{2}
- The mass radiative stopping power is written \rightarrow

$$
-\frac{1}{\rho}\frac{dE_{rad}}{dx} = \frac{N_A}{M_uA} \left[\int h\nu \frac{d\sigma_n}{d(h\nu)} d(h\nu) + Z_2 \int h\nu \frac{d\sigma_e}{d(h\nu)} d(h\nu) \right]
$$

with $d\sigma_{n,e}$ /d(hv), the differential cross sections for the emission of a photon with energy $h\nu$ due to the interactions with a nucleus or with an atomic electron and the state of the state

Characteristics of Bremsstrahlung for incident e⁻(1)

- For an electron-ion interaction \rightarrow energy emission spectrum for the photon continuous between 0 and *E*
- For an electron-electron interaction \rightarrow energy emission spectrum for the photon continuous between 0 and *E'* with (energy conservation + indistinguishable e⁻ + relativistic corrections) \rightarrow

$$
E' = mc^2 E[E + 2mc^2 - \beta(E + mc^2)]^{-1}
$$

• Usually non-dimensional cross sections for radiative energy losses are introduced →

$$
\Phi_{rad,n} = (\alpha r_e^2 Z_2^2)^{-1} \int_0^E (h\nu/E_{tot}) \frac{d\sigma_n}{d(h\nu)} dh\nu
$$

$$
\Phi_{rad,e} = (\alpha r_e^2)^{-1} \int_0^{E'} (h\nu/E_{tot}) \frac{d\sigma_e}{d(h\nu)} dh\nu
$$

Characteristics of Bremsstrahlung for incident e⁻(2)

- We introduce in previous expressions the constant of fine structure α = 1/137.036 and E_{tot} = E + mc^2 , the total energy of the electron
- With these notations \rightarrow the mass radiative stopping power becomes \rightarrow

$$
-\frac{1}{\rho}\frac{dE_{rad}}{dx}=\frac{N_A}{M_uA}\alpha r_e^2E_{tot}Z_2^2\Phi_{rad,n}[1+(1/Z)\Phi_{rad,e}/\Phi_{rad,n}]
$$

• Usually $\rightarrow \Phi_{rad,e}/\Phi_{rad,n}$ is supposed to be equal to 1, but it is only true at high energies \rightarrow for E \vee \rightarrow it is possible to show that it tends towards 0

©*rad,e/*©*rad,n* ratio

©*rad,e/*©*rad,n* does not depend much on *Z*

Determination of $\Phi_{\text{rad,n}}$

- Complex calculation → ≠ approximations for high E (*E >* 50 MeV) and small energies ($E < 2$ MeV) \rightarrow between these 2 limits \rightarrow interpolation
- Moreover it is necessary to consider the screening of the nucleus by atomic electrons
- Finally ©*rad,n* is a function that slowly varies as a function of *E* and Z_2
- For $E < 2$ MeV $\Rightarrow \Phi_{rad,n} \approx 16/3$ (that can be obtained from a non- relativistic calculation) \rightarrow constant cross section
- For high $E \to \Phi_{rad,n}$ π for $E \to \pi$ and tends towards \to

$$
\Phi_{rad,n} \to 4\left(\frac{1}{18} + \ln 183 Z_2^{-1/3}\right)
$$

Examples of $\Phi_{rad,n}$ for various media

23

Asymptotic behaviour of $\Phi_{rad,n}$ as a function of Z

24

Differential cross sections

- It is possible to show that $h\nu d\sigma_p/d(h\nu)$ is independent on $h\nu$ for small energies of incident $e^- \rightarrow$ radiated energy density is constant
- For larger energies of incident e⁻ → *hvdo_n/d(hv)* ↘ when *hv 7*
- $d\sigma_n/d(\Omega)$ has a maximum \perp to the direction of incident beam for small energies of incident e-
- For larger energies \rightarrow the maximum gradually moves to the direction of incident beam

Radiated energy density for thin targets

Bremsstrahlung: thin target \leftrightarrow thick targets (1)

- In a thin target Bremsstrahlung is the photon emission in only one collision between electron and atom \rightarrow process described by the differential cross section
- Bremsstrahlung in a thick target results from multiple interactions process of the electron \rightarrow e⁻ loses an important part of its energy (or all its energy) in the target
- Radiated energy density in a thick target is thus the sum of radiated energy densities in a thin target for different energies

Bremsstrahlung: thin target \leftrightarrow thick targets (2)

28

Characteristics of Bremsstrahlung for incident e⁺

- For incident $e^* \to (\Phi_{{\mathit{rad}},n}\,)^* \approx (\Phi_{{\mathit{rad}},n}\,)$ for high energies but for small energies $\rightarrow (\varPhi_{\mathit{rad},n}\,)^{\scriptscriptstyle +}$ < ($\varPhi_{\mathit{rad},n}\,$)⁻ (absence of electric dipolar moment)
- Moreover for high $E \to (\Phi_{rad,e})^+ \approx (\Phi_{rad,e})^-$ but for small $E \to e$ $(\Phi_{\text{rad},e})^+$ > $(\Phi_{\text{rad},e})^-$
- Finally \rightarrow radiative stopping power smaller for e^+ than for e^- at small incident energies and about equal for high energies

 $\Phi_{rad,n}$ for incident e^- and e^+

$(T/Z^2)/MeV$	$[\phi_{\mathrm{rad,n}}]^+ / [\phi_{\mathrm{rad,n}}]^-$
1×10^{-7}	0.014
2×10^{-7}	0.030
5×10^{-7}	0.059
1×10^{-6}	0.087
1.18×10^{-6}	$0.094*$
2×10^{-6}	0.119
5×10^{-6}	0.166
5.91×10^{-6}	$0.175*$
1×10^{-5}	0.206
2×10^{-5}	0.253
5×10^{-5}	0.335
5.91×10^{-5}	$0.359*$
1×10^{-4}	0.415
1.56×10^{-4}	$0.465*$
2×10^{-4}	0.507
5×10^{-4}	0.640
7.81×10^{-4}	$0.708*$
1×10^{-3}	0.740
2×10^{-3}	0.816
5×10^{-3}	0.887
7.81×10^{-3}	$0.916*$
1×10^{-2}	0.928
2×10^{-2}	0.962
5×10^{-2}	0.991
1×10^{-1}	1.000

 \sim

- 4 - 6

30

Total stopping power for electrons

- Total stopping power is the sum of electronic and radiative stopping powers (nuclear stopping power is negligible)
- As $dE_{elec}/dx \rightarrow$ constant when $E \nearrow$ and as $dE_{rod}/dx \propto E \rightarrow$ For E $\overline{\mathcal{A}}$ \rightarrow radiative losses become dominant
- As $dE_{elec}/dx \propto Z/A$ et $dE_{rad}/dx \propto Z^2/A$ \rightarrow radiative stopping power increases more quickly with Z than the electronic stopping power
- The critical kinetic energy E_c for which both stoppings are equal ↘ when *Z ↗*
- 1/ E_c linearly varies with $Z \rightarrow$ For E_c in MeV:

$$
E_c=\frac{817}{Z+1.97}
$$

Stopping power for electron: example 1

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

Incident electrons on Al ($Z = 13$) \rightarrow with equation: E_c = 54.6 MeV

Stopping power for electron: example 2

Evolution of *E^c* as a function of Z

Radiation yield (1)

- The radiation yield $Y(E_o)$ of an electron with initial kinetic energy E_o is the fraction of energy emitted as photons for a complete stopping of the incident electron in the medium
- The fraction *y(E)* of loss energy per unit of travelled distance that is converted into photons is given by

$$
y(E) = \frac{dE_{rad}/dx}{dE_{tot}/dx} = \frac{dE_{rad}}{dE_{tot}}
$$

• Thus $Y(E_0)$ for an electron with initial energy E_0 is the mean value of *y(E)* for *E* varying from *E⁰* to 0

$$
Y(E_0) = \frac{\int_{parcours} dE_{rad}}{E_0} = \frac{1}{E_0} \int_0^{E_0} y(E) dE
$$

Radiation yield (2)

• The radiation yield $\overline{}$ for E $\overline{}$ and Z $\overline{}$

• For small energies \rightarrow radiation yield is weak \rightarrow almost all eenergy is dissipated as heat \rightarrow target must be cooled

Radiation yield: Example

Electron energy (MeV)

Cherenkov effect

- When a charged particle travels in a medium faster than the light velocity in the medium (c/n with n refractive index of the medium) \rightarrow radiation emission
- Phenomenon analog to the shock wave produced in air at supersonic velocities
- The particle polarizes the medium \rightarrow for particle velocities $\lt c/n \rightarrow$ the dipoles are distributed in a symmetric way along the particle trajectory (in particular with respect to the plane \perp to the trajectory \rightarrow net dipolar momentum equal to 0 \rightarrow during the return to non-polarized state \rightarrow aleatory electromagnetic perturbations (propagating with velocity *c/n*) that cancel themselves
- For particle velocities $\geq c/n \to$ the velocity for dipoles creation \leq particle velocity \rightarrow asymmetry with respect to the plane \perp to the trajectory \rightarrow net dipolar momentum different from $0 \rightarrow$ perturbations constructively interfere \rightarrow apparition of a wave

Medium polarization by charged particle

Huygens construction for Cherenkov effect

- From the principle of Huygens: ≺vĐ
- Direction of emission: $\cos \Theta_c = \frac{(c/n)t}{vt} = \frac{c}{nv} = \frac{1}{n\beta}$

Remarks on Cherenkov effect

- Previous equation well implies a minimum velocity *vmin = c/n* (and consequently \rightarrow *n > 1*)
- With $T = E-m_0 c^2 = (\gamma 1)m_0 c^2$:

$$
T_{min} = m_0 c^2 \left(\frac{n}{\sqrt{n^2 - 1}} - 1\right)
$$

- For electron in water: T_{min} = 264 keV
- For proton in water: T_{min} = 486 MeV
- Cherenkov effect only for incidents electrons (for energies considered here)
- Refractive index varies with wave length \rightarrow as we need $n(\lambda) > 1$ \rightarrow only wave lengths for which this condition is fulfilled appears in the emission spectrum \rightarrow no X-ray

Refractive index of water

Maximum in the blue

• The medium must be transparent in the visible to allows to detect Cherenkov effect

Contribution to energy loss

• Number of photons emitted per unit length and per frequency unit \rightarrow \mathbf{r}

$$
\frac{d^2N}{d\nu dx} = \frac{2\pi\alpha z^2}{c} \sin^2 \Theta_c
$$

• For an electron (*z =* -1) and an optical windows between 350 nm and 500 nm (with n independent on λ in this windows) \rightarrow

$$
\frac{dN}{dx} = 390 \sin^2 \Theta_c (\text{cm}^{-1})
$$

• Very small number of photons \rightarrow no contribution to the energy loss

Cherenkov effect: example

Fuel assemblies cool in a water pond at the nuclear complex at La Hague

Electron trajectories (1)

• The notion of range for electrons is not so clear than for ions \rightarrow the electron trajectory cannot be considered as a straight line \rightarrow large angular deviations are possible (during electronic and nuclear collisions)

Electron trajectories (2)

- Moreover the electron can lose an important fraction of its energy in only one collision (\rightarrow 50%) \rightarrow depth penetration and length of the trajectory are random with large distributions \rightarrow important straggling
- In databases \rightarrow tabulation of the range CSDA, R_{CSDA} \rightarrow large difference can occur between R_{CSDA} and real range
- Detour factor can be very different from 1 (\approx 0.9 for media with small Z but can reach \approx 0.5 for large Z)

Depth penetration and trajectory length: Example

Distributions measured for a 800 keV electron in water

Detour factor : Examples

CSDA range: Examples (1)

- For 1 MeV electron in lead $\rightarrow R_{CSDA} = 0.7$ mm
- For 1 MeV electron in silicon $\rightarrow R_{CSDA} = 2$ mm
- For 1 MeV electron in air $\rightarrow R_{CSDA} = 4076$ mm

CSDA range: Examples (2)

Incident electron on aluminium (ρ =2.70 g/cm³)

http://www.nist.gov/pml/data/star/index.cfm

CSDA range: Examples (3)

As for ions \rightarrow we show R_{CSDA} $\times \rho \rightarrow \rho R_{CSDA}$ (quasi-) independent from medium, especially for small energies

Empirical equation for the range

For media with small Z \rightarrow empirical equation (with ρR_{CSDA} in gcm⁻² and E in MeV) \rightarrow

$$
\rho R_{CSDA} = \begin{cases} 0.412E^{1.27 - 0.0954 \ln E} & \text{for} \quad 0.01 < E < 2.5 \\ 0.530E - 0.106 & \text{for} \quad E > 2.5 \end{cases}
$$

Transmission of electrons

Shape completely \neq from the shape obtained for ions (rectangle) \rightarrow

Transmission of electrons β (1)

- During disintegration $\beta \rightarrow$ the β and a neutrino share the available energy between them \rightarrow spectrum in energy for the β continuous between 0 and *Emax* → « bell-shaped » curve
- When the β attenuation is observed \rightarrow behaviour \sim to a decreasing exponential → the ratio of the transmitted intensity *I* on the initial intensity I_{0} is approximated by \rightarrow

$$
\frac{I}{I_0} = \exp(-n\rho d)
$$

With ρ , the density of the medium, d , its thickness and n , the absorption coefficient i.e. a constant depending on *Emax* (and weakly on the medium) \rightarrow empirical expression for *n* (m²kg⁻¹) \rightarrow

$$
n = 1.7E_{max}^{-1.14}
$$

Transmission of electrons β (2)

Approximate expression \rightarrow false for a material thickness \sim to the range of electrons with energy E_{max} 55

Positron annihilation

Annihilation of the e^+ after the loss of all its kinetic energy \rightarrow different processes are possible \rightarrow the most probable is the annihilation with an e- at rest \rightarrow emission of 2 γ of 511 keV each (conservation of energy and momentum)

Example of muon ("heavy electron")

